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Abstract—This paper presents a full–state controller design
with respect to a reference solution for the one-phase Stefan
problem under input hysteresis. The setting models an industrial
casting processes with water cooling hysteresis under Neumann
boundary actuation. The control law proposed ensures expo-
nential stability of average enthalpy and is proven to provide
asymptotic convergence of temperature error and solidification
front error. A simulation supports the result.

I. INTRODUCTION

Consider a continuous steel casting solidification process.
The latter is typically modeled by the Stefan problem [1] with
moving boundary between liquid and solid phases. Transverse
surface cracks may be created when the curved strand of steel
undergoes unbending, which causes tensile stress on the inside
radius surface, if the steel surface is too brittle. Since ductility
of steel is strongly temperature-dependent, these cracks can
be avoided by regulating the surface temperature outside of
the embrittlement temperature range. The creation of internal
cracks, usually found below the strand surface, depends on
the relative location of the solidification front down the caster.
Another defect, strand bulging past support rolls, called a
”whale”, damages the casting machine and causes a work
stoppage. Hence, regulating the entire distributed temperature
profile and solidification front of the steel [2] is required.

The current industry-standard control method is open-loop
control that changes the cooling water spray flow rates ac-
cording to the casting speed and given spray patterns. The
latter define the flowrates in each spray zone for each casting
speed in the table, which depends on the steel grade, product
dimensions, and machine design. The spray pattern can be
determined by experience, or through offline optimization
techniques [3]–[6]. In the control literature on the Stefan
problem, there have been many techniques suggested. The
approach used in [7] is to solve the inverse Stefan problem,
i.e. impose a desired trajectory of the boundary and determine
computationally a temperature profile. This would satisfy the
whale constraints but could still result in temperature related
cracks. In [8], a full-state feedback control law for a single-
phase Stefan problem is designed by introducing a nonlinear
backstepping transformation. Based on this technique, [9]
designed an observer-based output feedback control law that
achieved exponentially stability of the moving interface to
a fixed reference setpoint. However, the convergence of a
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moving boundary to a fixed solid/liquid interface is not enough
for solidification process like the continuous casting of steel,
since neither whale constraints nor cracks constraints are
satisfied. These constraints require convergence to the moving
interface profile. In [10], the authors control the position of the
solidification front, neglecting surface cracks using thermostat-
style boundary control inputs. In [11], the authors found a
control law that ensured convergence of both temperature and
solidification front position to the desired reference profile for
a one-phase Stefan problem with practical assumptions on the
actual casting process. No previous work has considered the
phenomenon of hysteresis.

In this paper, a free boundary problem with hysteresis
type boundary conditions is considered. Hysteresis effects,
which can be characterized as a special type of memory-based
relation between an input signal v(t) and an output signal
w(t), arises in different areas of science, such as physics,
engineering, economics, and biology. There is an extensive
body of research concerning the modeling of hysteresis [12],
[13]. A generic approach to controlling hysteretic systems
is to combine inverse compensation with feedback [14]–
[16]. There are limited studies on control of Stefan problem
with hysteresis. [10] considered a two-phase Stefan problem
with hysteresis for a simple situation of thermostat control.
Friedman [17] considered optimal control of the free boundary
of a two-phase Stefan problem with hysteresis-type boundary
conditions. Periodic control of a two-phase Stefan problem
with Dirichlet boundary control with hysteresis was considered
in [18]. However, all these previous works propose hysteresis
effects on the free boundary, rather than at the surface where
heat flux is applied.

The existence of hysteresis [19] in a certain temperature in-
terval, points to significance of considering the thermal history
of actual cooling processes when designing controllers, which
is the subject of the present work. This paper is organized as
follows. The process model is presented in Section II, and the
hysteresis model is given in Section III. The control objective
and our main result, a control law that guarantees simultaneous
asymptotic convergence of the temperature and solidification
front location to the reference profile, are stated in Section IV.
Supporting numerical simulations are provided in Section V.
In Section VI, some extensions of this framework to observer
and output feedback control are briefly discussed.

II. PROCESS MODELS

A. Single-phase Stefan Problem

The continuous steel casting process can be modeled accu-
rately using a one-dimensional spatial domain of a moving 1-
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D slice divided into two separate sub-domains, corresponding
to the solid and the liquid steel phases [3]. The material is
solid for x ∈(0, s(t)) and liquid for x ∈ (s(t), L), L is the half-
thickness of the slab. The heat flux removed from the material
at the solid surface is directly related to the controlled flow rate
of the water spray applied at the solid surface. The relation is a
subject of ongoing research in the steel industry, but Nozaki’s
relation [20] has been successfully used by many modelers
[2]–[4]. The following practical assumption, discussed in detail
in [21], is made:
(A1) The initial conditions satisfy: 0 < s0 < L, T0(x)< Tf , is

continuous and non-decreasing for all 0 ≤ x < s0, and
T0(x) = Tf for all s0 ≤ x≤ L.

With (A1), the following PDE models the evolution of
temperature within the slice

Tt(x, t) = aTxx(x, t), x ∈ (0,s(t)) , t ∈
(
0, t f

)
(1)

T (s(t), t) = Tf , t ∈
(
0, t f

)
, (s(0) = s0 > 0) (2)

Tx(0, t) = u(t), t ∈
(
0, t f

)
(3)

T (x,0) = T0(x), x ∈ (0,L) , (4)

ṡ(t) = bTx(s−(t), t), t ∈
(
0, t f

)
(5)

where a = k/ρcp, b = k/ρL f , Tf is the melting temperature, k
is the thermal conductivity, ρ is the density, cp is the specific
heat, L f is the latent heat, and u(t) is the boundary heat flux.

B. Enthalpy Formulation

The thermodynamic energy of the material is called en-
thalpy. In a single-phase material, the enthalpy is approxi-
mately proportional to the temperature, with the constant of
proportionality equal to cp. However, for a solidifying pure
material, there is a step change in enthalpy at the melting
temperature, Tf , equal to the latent heat. Altogether, this means
the enthalpy, denoted as h, can be described as a function of
temperature:

h(T ) =
{

cpT T < Tf
cpT +L f T > Tf

(6)

In control theory terminology, enthalpy is the actual state
variable of the system. The following PDE is physically
equivalent to the Stefan Problem:

ρht (T (x, t)) = kTxx (x, t) , x ∈ (0,L) , t ∈
(
0, t f

)
(7)

Tx (0, t) = u(t) , Tx (L, t) = 0, t ∈
(
0, t f

)
(8)

T (x,0) = T0 (x) , x ∈ (0,L) (9)

The weak forms of the two PDEs are the same, as discussed in
[22]. Although it is much easier to write down and simulate nu-
merically, this PDE is more difficult to analyze mathematically
due to the discontinuity in the function h(T ). The enthalpy
PDE is used in this paper for the simulation.

III. HYSTERESIS MODEL

A. Hysteresis due to boiling

The heat extraction by cooling water is governed by water
boiling phenomena, which greatly depend on the temperature.
In the spray cooling region of the continuous caster, cooling
water droplets impinge onto the hot steel surface, and vaporize
immediately to form a stable steam layer. The latter prevents
subsequent water droplets from coming in contact with the
steel strand surface and decreases the heat removal.

An experiment was done to determine the boiling curve
from 200 oC to 1200 oC and then back to 200 oC for a Pt-
specimen under air-mist spray nozzles [19]. The curves for
both temperature processing histories (Figure 10 in [19]) reveal
hysteresis due to boiling in the water cooling process, as time
is needed for the steam layer conditions to change, and this
hysteresis depends on the surface temperature of the strand.
Let H (·) denote the hysteresis operator, then:

u(t) = H(T (0, t),q(t)) (10)

where q(t) denotes the accessible control input, i.e., the heat
extraction due to the spray cooling water. The configuration
of the process model is shown in Figure 1.

Fig. 1: Schematic of 1D Stefan problem with hysteresis

In an actual caster, the feasible range of the cooling water
flow rates is hard-constrained by the physical limitation of the
spray cooling system. Therefore, the following assumption is
made:
(A2) q(t) is a bounded piecewise continuous function,

i.e.M1 ≤ q(t)≤M2,M1,M2 > 0.
A simple way to account for boiling heat transfer effect

that has been successfully used by other modelers [23] is to
introduce a heat flux multiplier into (10),

u(t) = H(T (0, t),q(t)) = F(T (0, t)) q(t), (11)

where F(T (0, t)) is a simple hysteresis functional, as shown
in Figure 2.

Mathematically, it can be represented as follows:

F(T (0, t)) =



1 if T (0, t)< Tα or T (0, t)> Tβ

fL(T (0, t)) if ∃t∗ ∈ (0, t],s.t. T (0, t∗)≥ Tβ

and T (0,τ)> Tα∀τ ∈ [t∗, t]

fH(T (0, t)) if ∃t∗ ∈ (0, t],s.t. T (0, t∗)≤ Tα

and T (0,τ)< Tβ∀τ ∈ [t∗, t]
(12)
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Fig. 2: Hysteresis loop

where fL(·) and fH(·) are the heat flux multipliers that can
be measured in the laboratory through experiments; another
assumption is made:

(A3) fL(·) and fH(·) are known continuous functions.

B. Existence of solution

Theorem 1: Under assumptions(A1)–(A3), there exists a
unique solution to (1)-(5) with boundary condition (11), which
is defined for all t > 0.

Proof: Since typically, T0(0)> Tβ , without loss of gener-
ality assume F(T0(0)) = 1. Take any small δ > 0 and define:

Fδ (t)≡ 1, if 0 < t < δ . (13)

Based on Theorem 1 and Theorem 2 in [6], a unique
solution to the system (1)-(5) with boundary condition (11)
exists. Denote the solution as (T δ ,sδ ). Next, define

Fδ (t) = F(T (0, t−δ )), for δ < t < 2δ . (14)

Since Fδ (t) is known for this interval, we can solve (1)-
(5) for δ < t < 2δ with this Fδ (t) and with the initial values
(T δ (x,δ ),sδ (t)).

Now define Fδ (t) for 2δ < t < 3δ as above in terms of
the function T (0, t) obtained in the second step, and solve
(1)-(5) for 2δ < t < 3δ . Continuing in this way we obtain a
unique solution of (1)-(5) with boundary condition (11) with
F(t) = Fδ (t).

From Lemma 1 in [6], there exists a constant C > 0 such
that

0≤ d
dx

T δ (sδ−, t)≤C

i.e.

0≤ ṡδ (t)≤C. (15)

From (15), the functions sδ form an equicontinuous, uniformly
bounded family. Hence Ascoli-Arzela’s theorem holds and we
can select a subsequence sδ that converges uniformly to s(t)
as δ → 0, and T δ converges uniformly to T , i.e. (T,s) will be
a solution.

IV. CONTROLLER DESIGN

A. Control objective
Assume that a known reference temperature T̄ (x, t) and

solidification front position s̄(t) have been determined that
are the solutions to (1)-(5) under known reference control
input q̄(t) with initial conditions T̄ (x,0) = T 0 and s̄(0) = s̄0.
This reference temperature profile should satisfy the quality
goals and constraints of the process, and could, for example,
be calculated for the continuous caster via the optimization
methods [5], [6]. That is, matching the reference temperature
should result in the safe operation and good quality material.
One more assumption on the reference profile is required:
˙̄s(t)≥ 0 for all t ≥ 0.

Denote the reference tracking errors as s̃(t) = s(t)− s̄(t),
andT̃ (x, t) = T (x, t)− T̄ (x, t). Subtracting PDE (1) – (5) with
the reference control and solution from that with control to be
determined yields,

T̃t (x, t) = aT̃xx (x, t) , x ∈ (0,L)−{s, s̄} . (16)

T̃x(0, t) = F(Ts(t))q(t)−F(Ts(t))q̄(t), (17)

T̃x(L, t) = 0. (18)

Also, since solutions to (1) are twice spatially differentiable
away from the solidification front, they must have continuous
first spatial derivatives. Thus, if s̄(t) 6= s(t), then T̄x (s+ (t) , t)=
T̄x (s− (t) , t), so

ṡ(t) = b
(
T̃x
(
s− (t) , t

)
− T̃x

(
s+ (t) , t

))
, (19)

˙̄s(t) =−b
(
T̃x
(
s̄− (t) , t

)
− T̃x

(
s̄+ (t) , t

))
. (20)

The control objective is to drive the moving interface s(t)
to the desired reference s̄ while ensuring the convergence of
T (x,t) to T̄ (x, t) as t→∞, by manipulating the heat flux q(t).

Denote s1(t) = min{s(t), s̄(t)}, s2(t) = max{s(t), s̄(t)}.
From here on, the notations will be simplified for clarity and
space saving, using T (x) to represent T (x, t), or omitting both
arguments altogether.

B. Preliminaries
Since (1) is parabolic on the sub-domains, if (A1) holds,

then Tx is uniformly bounded (see Theorem 11.1, p. 211 of
[24]) by a constant depending on the initial condition and
bounds on q. Due to (5), this means that the solidification
front speed is bounded, i.e.

0≤ vmin ≤ ṡ≤ vmax < ∞. (21)

Also
∣∣T̃ (0)

∣∣ is bounded since∣∣T̃ (0)
∣∣= ∣∣T̃ (0)− T̃ (L)

∣∣= ∣∣∣∣∫ L

0
T̃xdx

∣∣∣∣≤√L
∥∥T̃x
∥∥

2 . (22)

As a consequence of Poincare’s inequality:∫ L

0
T 2dx≤ 2T 2 (s)+4L2

∫ L

0
T 2

x dx = 2T 2
f +4L2

∫ L

0
T 2

x dx.
(23)

That is, both T and Tx are bounded in the L2 (0,L) norm,
and hence T is bounded in the Sobolev space H1 (0,L). Sim-
ilarly, Agmon’s inequality ensures that |T | is also uniformly
bounded.
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C. Control law

A generic approach to controlling hysteretic systems is to
design hysteresis compensation, like inversion operator [14]
to ensure accurate control. As shown in Figure 3, given a
desired boundary heat flux ud , and initial memory of hysteresis
operator F , the inverse operator F−1 generates the required
cooling water heat flux q(t) to ensure u = ud .

Fig. 3: Illustration of hysteresis inversion.

In [11], an enthalpy based control law is designed for system
(1)-(5) without hysteresis. In the present work, hysteresis
compensator is added to the control law to ensure controller
performance for system (1)-(5) with boundary condition (11).

Define the “enthalpy function” η (T ):

η (T ) =
{ 1

a T, if T < Tf ,
1
a T + 1

b , if T ≥ Tf .

The quantity η is proportional to the physical enthalpy h
defined in (6). In this section, we will use the notation η̃ =
η (T )−η (T̄ ) for the difference in enthalpy and

H̃(t) =
∫ L

0
η̃(t)dx =

1
a

∫ L

0
T̃ (t)dx− 1

b
s̃(t),

for the total difference.
Theorem 2: Suppose the initial conditions satisfy assumption

(A1), the reference temperature profile and the reference spray
water flux satisfy assumption (A2), and the boundary condition
satisfies the control law:

q(t) = F−1 (T (0, t))F (T̄ (0, t)) q̄(t)+KF−1 (T (0, t)) H̃(t)
(24)

where K is the controller gain. Then the reference temperature
tracking error T̃ converges asymptotically to 0 uniformly
over the domain, and the free boundary tracking error s̃ also
converges to 0 asymptotically.

Proof: First, using equations (16)-(20),

˙̃H =−(F(Ts(t))q(t)−F(T̄s(t))q̄(t)).

Then, applying control law (24), yields

˙̃H =−KH̃

which indicates |H̃| decreases exponentially. As noted in
Section IV.B, if all the assumptions are satisfied, T, T̄ and
consequently also T̃ are bounded in H1(0,L) over time. Then
|s̃| must also be bounded.

The proof is similar to the main proof given in [11]. The key
to the proof is using an infinite-dimensional invariance prin-
ciple from [25] to show convergence. Consider the Lyapunov
functional candidate

V
(
T̃
)
=

1
2

∫ L

0
T̃ 2dx− a

b
Tf (s+ s̄)+2

a
b

Tf L (25)

on the state space of the error system,
(
T̃ , s̃
)
∈ H1 (0,L)×R.

This function is clearly continuous on that space, and non-
negative on trajectories of the system.

Taking the time derivative of the first term of (25) along the
trajectory of the system yields:

d
dt

1
2
∫ L

0 T̃ 2dx =−aT̃ (0)(F(Ts(t))q(t)−F(T̄s(t))q̄(t))
−a

∫ L
0 T̃ 2

x dx+ a
b T̃ (s) ṡ− a

b T̃ (s̄) ˙̄s.

Also,

(F(Ts(t))q(t)−F(T̄s(t))q̄(t)) = KH̃ = KH̃(0)e−Kt . (26)

Differentiating the second term in (25) gives

d
dt

a
b

Tf (s+ s̄) =
a
b

Tf (ṡ+ ˙̄s) . (27)

Combining above equations yields

V̇
(
T̃
)
=−aT̃ (0)KH̃(0)e−Kt −a

∫ L
0 T̃ 2

x dx
− a

b (T̄ (s) ṡ+T (s̄) ˙̄s) .
(28)

From (28), the first term is exponentially decreasing. Under
the assumptions, both ṡ and ˙̄sare positive and bounded below,
as discussed above. Since the temperatures are bounded,
choosing an appropriate temperature scale ensures that T̄ (s)
and T (s̄) are also non-negative. So, after enough time,

V̇
(
T̃
)
≤−a

∫ L

0
T̃ 2

x .

Then, applying the Poincare inequality,

−a
∫ L

0 T̃ 2
x dx≤− a

4L2

∫ L
0 T̃ 2dx+2T̃ 2 (L)

=− a
4L2

∫ L
0 T̃ 2dx =−W

(
T̃
)
.

(29)

Now, the invariance principle can be applied. Using the
notation of [25], let X now be (H1 (0,L)×R, the state space
of the problem, and Y be C0 (0,L)×R. Denote Ŵ to be the
extension of W to Y . Then, X is compactly embedded inY ,
according to Rellich-Kondrachov theorem and the Ascoli-
Arzela criterion [26]. The trajectories of the error system are
bounded in X . All conditions of the theorem are met, and
therefore all trajectories of the system converge to the set

M3 ⊂
{

y ∈ Y : Ŵ (y) = 0
}
=
{

T̃ ≡ 0
}

in the Y -norm. That is, T̃ converges to 0 uniformly. Finally,
since both T̃ and

∣∣H̃∣∣ converge to 0, according to the definition
of H̃, s̃ must converge to 0 as well.

V. SIMULATION

A. Numerical simulation

The performance of the proposed hysteresis compensated
controller is investigated through numerical simulation by
comparing to the performance of the following controller,

q(t) = q̄(t)+KH̃(t) (30)

which is the previous uncompensated controller design for the
Stefan problem [11]. The specific initial conditions used are
shown in Figure 4, the hysteresis functional used is represented
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by line segments shown in Figure 5, and the rest of the simu-
lation parameters are given in Table I. The simulations employ
an enthalpy-based method to model solidification, rather than
an actual moving boundary. The simulation code was verified
against an analytical solution to the Stefan problem from [27].
Varying ū is used to simulate the spray zone, and the bounds
of the control input are set to:

uL = 0.01ū,uH = 5ū. (31)

TABLE I: Thermodynamic properties used in simulations.

Symbol Description Value
k thermal conductivity 80.4 W/m · K
cp specific heat 460 J/kg · K
Tf melting temperature 1538 oC
L half-thickness of strand 0.002 m
ρ density 7.87×103 kg/m3

Fig. 4: Initial condition for simulations.

Fig. 5: Hysteresis loop for simulation.

The behavior of the surface temperature reference tracking
error T̃ (0, t), the closed-loop response of the moving boundary
s(t) , and the manipulated heat flux, q(t), are depicted in
Figure 6. Hysteresis compensated control and uncompensated
control show similar performance in driving s(t) to s̄(t).
However, for the surface temperature, compensated control
ensures that T̃ (0, t) → 0 while the uncompensated control
does not provide such a behavior. Due to the existence of
the hysteresis, the compensated control varies more compared
to the uncompensated control to account for the effects of the
hysteresis.

VI. DISCUSSION AND EXTENSION

One weakness of the proposed control law lies in the
assumption (A3) that the continuous hysteresis characteristics

(a) Temperature tracking error T̃ (0, t)

(b) Solidification front s(t)

(c) Neumann boundary control u(t)

Fig. 6: Simulation of system (1)-(5) with initial condition
mismatch control law (24).

can be determined based on lab experiments. However, the
actual hysteresis characteristics may be different from the lab
measurement or changing with time due to casting conditions
changes. One approach is to design adaptive controllers with
an adaptive hysteresis inverse, which will be a future work.

Another weakness lies in the full-state feedback control.
Unfortunately, full-state feedback is not realistic for this
problem. Enthalpy cannot be directly measured, only surface
temperature,T (0, t), can realistically be measured during cast-
ing. For an implementable control algorithm, an estimation
scheme is needed. An estimator and output feedback control
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law has also been found which drive both estimation error
and reference error to zero in simulation. The latter results
will be presented in the subsequent publications due to space
limitations.

VII. CONCLUSION

In this paper we presented a one-phase Stefan problem
with hysteresis affecting the boundary flux input and proposed
a hysteresis-compensating full-state feedback controller. The
latter is proven and numerically shown to achieve asymptotic
convergence to zero of the reference tracking errors for the
temperature, unlike the uncompensated previously derived
controller, and the solidification front position. An extension
to the output feedback control will be provided elsewhere.
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